
www.manaraa.com

Processing Temporal Constraint Networks

�

Eddie Schwalb, Rina Dechter

Department of Information and Computer Science

University of California at Irvine, CA 92717

eschwalb@ics.uci.edu, dechter@ics.uci.edu

Abstract

This paper describes new algorithms for pro-

cessing quantitative and qualitative Tempo-

ral Constraint Satisfaction Problems (TCSP).

In contrast to discrete Constraint Satisfaction

Problems (CSP), enforcing path-consistency on

quantitative TCSP is exponential, due to the

fragmentation problem. Identifying the frag-

mentation problem allows us to design several

e�cient polynomial algorithms that are e�ec-

tive for detecting inconsistencies and explicat-

ing some implicit constraints. We discuss the

tradeo�s between their e�ectiveness and e�-

ciency both theoretically and empirically.

1 Introduction

Problems involving temporal constraints arise in vari-

ous areas such as scheduling [15, 14], planning [13], tem-

poral databases [4, 8, 10] and common sense reasoning

[6, 17]. Several formalisms for expressing and reasoning

about temporal constraints have been proposed, most

notably, Allen's interval algebra [1], Vilain and Kautz's

point algebra [20], linear inequalities of Malik and Bin-

ford [11] Valdez-Perez [18], Dean andMcDermott's Time

Map Management [4], Dechter, Meiri and Pearl's Tem-

poral Constraint Satisfaction Problems (TCSP) [3] and

Meiri's combined model of quantitative and qualitative

networks [8]. Each of these representations is supported

by specialized constraint-propagation algorithms. This

paper extends the work on TCSPs by providing new al-

gorithms which improve signi�cantly on the algorithms

suggested in [3, 16] and render the model practical.

The combined model [8] builds upon Allen's Interval

Algebra. It o�ers a general network-based computa-

tional model for temporal reasoning which is capable of

handling both qualitative and quantitative information.

Variables represent either time points or time intervals,

�

This work was partially supported by NSF grant IRI-

9157636, by Air Force O�ce of Scienti�c Research grant

AFOSR 900136 and by grants from TOSHIBA of America

and Xerox

and constraints may be either metric (between points)

or qualitative disjunctive relations. The model facili-

tates the following tasks:

1. Finding all feasible times a given event can occur.

2. Finding all relationships between two given events.

3. Finding one or more consistent scenarios.

4. Systematically explicating implicit constraints.

5. Representing the data in a minimal network form.

It is well known that the above tasks are NP-Hard [3].

The source of complexity stems from specifying relation-

ships between pairs of variables as disjunctions of atomic

relations.

Disjunctive constraints often arise in scheduling and

planning. Logistics constraints, for example, are a pos-

sible source of disjunction. Consider the following ex-

ample:

Example 1: Today's date is Jan 1. The task is to deliver

a large cargo from New York to Los Angeles to be picked

up either between Jan 8 and Jan 10, between Jan 15-

16 or between Jan 18-19. The cargo must go through

Chicago and Dallas. Using several big air transports,

the cargo can be delivered from New York to Chicago

in 1-2 days, but on the ground it takes about 10-11 days.

From Chicago to L.A. it takes 3-4 days using numerous

small air transports, while with ground shipments the

whole operation requires 13-15 days. From Chicago to

Dallas it takes 2-4 days by air or 10-13 days on the

ground. From Dallas to L.A. there are several options

that require 5-7 days, 11-12 days, 13-14 days or 16-19

days. The same personnel engaged in the transport from

Chicago to Dallas must also supervise another direct

transport from Newark to Phoenix.

Given the above constraints, we are interested in an-

swering queries such as: \are these constraints satis�able

?" or \when should the cargo be in Dallas ?" or \can

the cargo arrive in L.A. on Jan 18-19 ?". The model

of Temporal Constraint Satisfaction Problems (TCSP)

provides a representation with which such queries can

be answered.

The two central tasks in constraint processing are (1) to

determine consistency of a set of constraints and (2) to

www.manaraa.com

make implicit constraints explicit. Determining consis-

tency usually involves computing a single solution while

explicating all implicit constraints involves computing

the minimal network.

Since determining consistency and computing the mini-

mal network is not tractable, it is common to use poly-

nomial approximation algorithms. The most common

method is to enforce path-consistency [3]. As opposed

to discrete CSPs, enforcing path-consistency on TCSPs

is exponential. In [16] we introduce a polynomial algo-

rithm for approximating path-consistency, called Upper-

Lower-Tightening (ULT). Here we present an improve-

ment on that algorithm, called Loose Path-Consistency

(LPC), together with three variants called LPC-2, Loose

Directional Path-Consistency (LDPC) and Partial LPC

(PLPC). These algorithms are extended to process gen-

eral networks of qualitative and quantitative constraints.

The relative and absolute e�ectiveness of these algo-

rithms is determined both theoretically and empirically.

The quantitative empirical evaluation is performed on

selected benchmarks. We observe that the di�cult prob-

lems lie in the region in which about half of the instances

generated are solvable (and half not); this region is of-

ten referred to as the transition region. Using these

problem distributions as benchmarks, we report that the

methods presented in this paper are capable of improv-

ing e�ciency of backtrack search on small problems by

orders of magnitude.

The paper is organized as follows. Section 2 describes

the TCSP model. Section 3 described several new poly-

nomial algorithms and section 4 describes a complete

backtracking algorithm. Finally, section 5 presents an

empirical evaluation and section 6 concludes.

2 Temporal Constraint Networks

A combined qualitative and quantitative constraint net-

work [8] involves a set of variables and a set of binary

constraints over pairs of variables. There are two types

of variables, point and interval variables. The constraint

T

ij

between a pair of variables, X

i

; X

j

is described by

specifying a set of allowed relations, namely

T

ij

def

= (X

i

r

1

X

j

) _ � � � _ (X

i

r

k

X

j

): (1)

There are three types of relations:

1. A point-point relation between two point variables,

X

i

; X

j

, is quantitative, and has the form

a � X

j

�X

i

� b

where a and b are constants.

2. A point-interval relation between a point variable

and an interval variable, is qualitative, and is a sub-

set of f before, starts, during, �nishes, after g

abbreviated f b, s, d, f, a g respectively (see Table

1 for illustration).

3. An interval-interval relation between two interval

variables is qualitative, and is a subset of

(

before; after; meets; met�by;

overlaps; overlaps�by; during; contains; equals;

starts; started�by; �nishes; �nished�by

)

abbreviated f b,bi, m,mi, o,oi, d,di, =, s,si, f,� g

respectively (see Table 2 for illustration).

Table 1: The 5 qualitative point-interval relations.

Relation Inverse ExampleSymbol

Y

Y

Y

YX finishes Y f fi

X after Y

didX during Y

YX starts Y s si

X before Y b

X

X

X

bi

ai X

X

a

Table 2: The 13 qualitative interval-interval relations.

Relation Inverse ExampleSymbol

X

X

Y

Y

X Y

X
Y

X
Y

X
Y

X
Y

X before Y

X equal Y

X meets Y

X overlaps Y

b bi

= =

m mi

o oi

didX during Y

X starts Y s si

X finishes Y f fi

The structure of a Temporal Constraint Network can be

represented by a constraint graph, in which a node cor-

responds to a variable (point or interval) and an edge

is labeled by the elements in the disjunctive constraint,

namely either by the set of intervals (if point-point con-

straint) or by the set of allowed qualitative relations.

(see Figure 1).

Example 2: Consider the logistics problem in Exam-

ple 1. Let X

1

be the time the cargo arrived in Chicago,

X

2

the time it arrived in Dallas and X

3

the time it ar-

rived in L.A. Let I

1

be the time interval during which

the cargo was shipped from Chicago to Dallas and let

I

2

be the time at which the smaller cargo was shipped

directly from Newark to Phoenix. Let X

0

="Jan 1".

The constraint graph is shown in Figure 1. The fact

that the same personnel need to supervise the shipment

from Chicago to Dallas and the shipment from Newark

to Phoenix is represented by the constraint specifying

www.manaraa.com

3

0
1

[2,4]

[10,13]

[5,7] [11,12]
[13,14] [16,19]

[18,19]

[15,16]

[8,10]
[13,15]

[3,4]

[1,2] [10,11]

X

X

I 2

I
1

X

{ s } { b,bi, m,mi }

X2
{ e }

Figure 1: The constraint graph of the logistics problem.

that I

1

and I

2

do not overlap. Such a constraint can not

be represented by point-point relations.

2.1 The quantitative TCSP Model

We �rst restrict the discussion to quantitative networks

that involve only point variables. Algorithms on this

model are extended to process combined qualitative and

quantitative networks.

A quantitative TCSP involves a set of variables,

X

1

; . . . ; X

n

, having continuous domains, each represent-

ing a time point. Each constraint T is represented by a

set of intervals

T

def

= (I

1

; . . . ; I

n

) = f[a

1

; b

1

]; . . . ; [a

n

; b

n

]g:

For a unary constraint T

i

over X

i

, the set of intervals

restricts its domain such that

(a

1

� X

i

� b

1

) [. . .[(a

n

� X

i

� b

n

):

For a binary constraint T

ij

over X

i

; X

j

, the set of in-

tervals restricts the permissible values for the distance

X

j

�X

i

; namely it represents the disjunction

(a

1

� X

j

�X

i

� b

l

) [. . .[(a

n

� X

j

�X

i

� b

n

):

All intervals are assumed to be pairwise disjoint.

A TCSP be represented by a directed constraint graph,

where nodes represent variables and an edge i ! j in-

dicates that a constraint T

ij

is speci�ed. Every edge

is labeled by the interval set as illustrated in Figure 1.

A special time point X

0

is introduced to represent the

\beginning of the world". All times can be speci�ed rel-

ative to X

0

and thus each unary constraint T

i

can be

represented as a binary constraint T

0i

(having the same

interval representation).

A tuple X = (x

1

; . . . ; x

n

) is called a solution if the

assignment X

1

= x

1

; . . . ; X

n

= x

n

satis�es all the

constraints. The network is consistent i� at least one

solution exists. A value v is a feasible value of X

i

if

there exists a solution in which X

i

= v. The minimal

domain of a variable is the set of all feasible values of

that variable. The minimal constraint is the tightest

constraint such that the network describes the same set

of solutions. The minimal network is such that all its

domains and constraints are minimal.

Path-Consistency algorithms are commonly used to

tighten the network. To enforce path-consistency on

TCSPs, there is a need to de�ne the �;
 operations.

T

S

S

S

T

T

0 1 2 3 4 5 6 7 8 9-1-2

T = f[�1:25; 0:25]; [2:75; 4:25]g

S = f[�0:25; 1:25]; [3:77; 4:25]g

T � S = f[�0:25; 0:25]; [3:75; 4:25]g

T
 S = f[�1:50; 1:50]; [2:50; 5:50]; [6:50; 8:50]g

Figure 2: A pictorial example of the � and
 operations.

De�nition 1 : Let T = fI

1

; . . . ; I

l

g and S =

fJ

1

; . . . ; J

m

g be two sets of intervals which can cor-

respond to either unary or binary constraints.

1. The intersection of T and S, denoted by T � S,

admits only values that are allowed by both of them.

2. The composition of T and S, denoted by T
 S,

admits only values r for which there exists t 2 T

and s 2 S such that r = t+ s.

The
 operation may result in intervals that are not

pairwise disjoint. Therefore, additional processing may

be required to compute the disjoint interval set.

De�nition 2: The path-induced constraint on variables

X

i

; X

j

is R

path

ij

= �

8k

(T

ik

 T

kj

). A constraint T

ij

is

path-consistent i� T

ij

� R

path

ij

and a network is path-

consistent i� all its constraints are path-consistent.

A general TCSP can be converted into an equivalent

path-consistent network by repeatedly applying the re-

laxation operation T

ij

 T

ij

� (T

ik

 T

kj

), using algo-

rithm PC-2, as described in Figure 3. Some problems

may bene�t from a weaker version, called DPC, which

is more e�cient.

The complexity of PC-2 and DPC can be bounded by

O(n

3

R

3

) and O(n

3

R

2

) respectively, where n is the num-

ber of variables and R is the range of the constraints, i.e.

the di�erence between the lowest and highest numbers

speci�ed. In contrast to discrete CSPs, however, enforc-

ing path-consistency on TCSPs is problematic when the

range R is large or the domains are continuous. An up-

per bound on the number of intervals in T
S is jT j � jSj,

where jT j; jSj are the number of intervals in T; S respec-

tively. As a result, the number of intervals in the path-

consistent network can be exponential in the number of

intervals per constraint in the input network

1

.

Example 3: To illustrate the di�culty in enforcing

path-consistency, consider the network presented in Fig-

ure 4, with 3 variables, 3 constraints and 3 intervals per

constraint. After enforcing path-consistency, two con-

straints remain unchanged in the path-consistent net-

work while the third is broken into 10 subintervals. As

this behavior is repeated over several triangles in the

network, the number of intervals becomes exponential.

1

yet bounded by R when integer domains are used

www.manaraa.com

[11,12]

[1,2]

[21,22]

[0,1]

[16,17]

[23,24]

Path-Consistency [11,12]

[1,2]

[21,22]

[0,1]

[16,17]

[23,24]

[24,26] [27,29] [34,36] [37,39] [44,46]
[1,3] [11,13] [17,19] [21,22] [23,23][0,22] [23,33] [34,50]

Figure 4: The fragmentation problem.

Gd -1

7-2

5

0

20

15

0-2

4

-1

7-2

5

0

-3

12

-216

-3

11
[1,4]

[0,15]

[0,5]

[2,20]

[2,7]

Distance Graph
4

Minimal Distance
Algorithm

Figure 5: Processing an STP.

Algorithm PC-2

1. Q f(i; k; j)j(i < j) and (k 6= i; j)g

2. while Q 6= fg do

3. select and delete a path (i; k; j) from Q

4. if T

ij

6= T

ik

 T

kj

then

5. T

ij

 T

ij

� (T

ik

 T

kj

)

6. if T

ij

= fg then exit (inconsistency)

7. Q Q [RELATED-PATHS((i; k; j))

8. end-if

9. end-while

Algorithm DPC

1. for k n downto 1 by -1 do

2. for 8i; j < k such that (i; k); (k; j) 2 E do

3. if T

ij

6= T

ik

 T

kj

then

4. E E [(i; j)

5. T

ij

 T

ij

� (T

ik

 T

kj

)

6. if T

ij

= fg then exit (inconsistency)

7. end-if

8. end-for

9. end-for

Figure 3: Algorithms PC-2 and DPC [3].

A special class of problems which does not exhibit such

an exponential blow-up is the Simple Temporal Problem

(STP) [3], where only a single interval is speci�ed per

constraint.

An STP can be associated with a directed edge-weighted

graph, G

d

, called a distance graph, having the same

vertices as the constraint graph G; each edge i ! j

is labeled by a weight w

ij

representing the constraint

X

j

� X

i

� w

ij

, as illustrated in Figure 5. An STP is

consistent i� the corresponding d-graph G

d

has no neg-

ative cycles and the minimal network of the STP cor-

responds to the minimal distances of G

d

. An all-pairs

shortest path procedure (Figure 5) is equivalent to en-

forcing path-consistency. Therefore, PC-2 is polynomial

and complete for STPs [3].

The source of intractability of enforcing path-

consistency stems from the fact that the relaxation op-

eration T

ij

 T

ij

� (T

ik

T

kj

) may increase the number

of intervals in T

ij

. As a result, we attempt to approxi-

mate path-consistency. The basic algorithm for approxi-

mating path-consistency, called Upper Lower Tightening

(ULT) [16], utilizes the fact that an STP is tractable.

The idea is to use the extreme points of all intervals

associated with a single constraint as one big interval,

yielding an STP, and then to perform path-consistency

on that STP. The key observation is that this process can

only decrease the number of intervals per constraint.

3 Loose Path-Consistency

In the following, an improvement of ULT is presented,

called Loose Path-Consistency (LPC), which is more ef-

fective in removing intervals. The idea is to use a loose

intersection operation, denoted /, as de�ned below.

De�nition 3 : Let T = fI

1

; I

2

; . . . ; I

r

g and S =

fJ

1

; J

2

; . . . ; J

s

g be two constraints. The loose intersec-

tion, T /S consists of the intervals fI

0

1

; . . . ; I

0

r

g such that

8i I

0

i

= [L

i

; U

i

] where [L

i

; U

i

] are the lower and upper

bounds of the intersection I

i

� S.

www.manaraa.com

Algorithm Loose Path-Consistency (LPC)

1. input: N

2. N

00

 N

3. repeat

4. N N

00

5. compute N

0

; N

00

.

6. until 9i; j (T

00

ij

= �) ; inconsistency, or

or 8i; j jT

00

ij

j = jT

ij

j ; no interval removed.

7. if 9i; j (T

00

ij

= �) then output \inconsistent."

else output: N

00

.

Figure 6: The Loose Path-Consistency (LPC) algorithm.

It is easy to see that (1) the number of intervals in T

ij

is not increased when assigning T

ij

 T

ij

/ (T

ik

 T

kj

),

(2) 8k T

ij

� T

ij

/ (T

ik

 T

kj

) � T

ij

� (T

ik

 T

kj

) and

(3) T / S 6= S / T .

Example 4 : Let T = f[1; 4]; [10; 15]g and S =

f[3; 11]; [14;19]g. Then T /S = f[3; 4]; [10; 15]g, S /T =

f[3; 11]; [14;15]g while S � T = f[3; 4]; [10;11]; [14;15]g.

By De�nition 2, a constraint T

ij

is path-consistent i�

T

ij

� �

8k

(T

ik

 T

kj

). When replacing the intersection

operator � with the loose intersection operator /, we

solve the fragmentation problem.

De�nition 4: We de�ne N

0

; N

00

as follows: (see Figure

7 for a sample trace)

� N

0

is derived from N by assigning

T

0

ij

= �

8k

(T

ik

 T

kj

):

� N

00

is derived from N

0

by loosely intersecting

T

00

ij

= T

ij

/ T

0

ij

:

Algorithm LPC is presented in Figure 6. The network

N

0

is a relaxation of N and therefore loosely intersecting

it with N results in an equivalent network.

Lemma 1: Let N be the input to LPC and R be its

output.

1. The networks N and R are equivalent.

2. Every iteration of LPC (excluding the last) removes

at least one interval from one of the constraints.

Proof: Part 1: The network N

0

is a relaxation of N .

Therefore loosely intersecting N

0

with N results in an

equivalent network. Part 2: If no interval was removed,

the algorithm terminates. 2

Theorem 1: Algorithm LPC terminates in O(n

3

k

3

e)

steps where n is the number of variables, e is the number

of constraints and k is the maximal number of intervals

in each constraint.

Proof: Computing N

0

requires processing every triangle

in the network once, thus requires O(n

3

k

2

) steps. Be-

cause in every iteration at least one interval is removed,

Algorithm LPC-2

1. Q f(i; k; j)j(i < j) and (k 6= i; j)g

2. while Q 6= fg do

3. select and delete a path (i; k; j) from Q

4. T

0

ij

 T

ij

/ (T

ik

 T

kj

)

5. if T

0

ij

= fg then exit (inconsistency)

6. if jT

0

ij

j < jT

ij

j then

Q Q [RELATED-PATHS((i; k; j))

7. T

ij

 T

0

ij

8. end-while

Algorithm DLPC

1. for k n downto 1 by -1 do

2. for 8i; j < k such that (i; k); (k; j) 2 E do

3. T

0

ij

 T

ij

/ (T

ik

 T

kj

)

4. if T

0

ij

= fg then exit (inconsistency)

5. if jT

0

ij

j < jT

ij

j then E E [(i; j)

6. T

ij

 T

0

ij

7. end-for

8. end-for

Figure 9: Algorithms LPC-2 and DLPC.

there are at most ek iterations, resulting in a complexity

of O(n

3

k

3

e). 2

Example 5: Consider the network in Figure 4. As

shown in Figure 8, applying LPC tightens the network

and does not increase the number of intervals in any

of the constraints. For example, loosely intersecting

[0; 22] with the 9 intervals of ([1; 2]; [11; 12]; [21;22])

([0; 1]; [16; 17]; [23; 24]) results in one interval [1; 22]. The

approximation is due to using loose intersection rather

than strict intersection.

Algorithm LPC is conceptually di�erent than PC-2.

While an iteration of LPC is divided into two sequen-

tial stages that involve the whole network, algorithm

PC-2 uses simpler operations and allows parallel exe-

cution. We therefore present two variations on LPC,

called Loose Path-Consistency-2 (LPC-2) and Direc-

tional Loose Path-Consistency (DLPC), as presented in

Figure 9. These algorithms di�er from PC-2 and DPC

only by using the loose intersection / operator instead

of the full intersection � operator.

Theorem 2: Given a network N , let n be the number

of variables, e be the number of constraints and k be the

maximum number of intervals per constraint.

1. Algorithms LPC-2 and DLPC terminate

in O(nk

2

(n

2

+ ke)); O(n

3

k

2

) steps respectively and

compute an equivalent network.

2. Algorithm LPC computes a tighter networks than

algorithm ULT; algorithm LPC-2 computes a

tighter network than DLPC; algorithm LPC com-

putes a tighter network than LPC-2.

www.manaraa.com

N

X X23

X0
X1

[30,40]

(1)N’’ [10,20] [110,110]

N’(1)

[70,90]

[130,150]

[160,180]

[130,150]

[150,160]

[-100,-60]

[110,130] [140,160]

[-60,-30] [10,30] [40,70]

[-10,40] [90,120]

[30,60] [120,140]

[20,30]

[130,140]

[110][120]

N’’

N’

[130,150]

[10,20]

[150,160]

[10,30]

[140,160]

[30,50]

[10,30]

[100,120]

[30,50]

[20,30]

[130,140]

[110,120]

N’’

N’(2)

(2)

[130,150]

[10,20]

[150,160]

[10,30]

[140,160]

[30,50]

[240,250]

[10,30]

[100,120]

[30,50]

[20,30]

[130,140]

[110,120]

(3)

(3)

[30,140]

[230,250]

[130,160]

[40,60]

[-160,-120]

[-110,-70]

[-60,30]

[60,90]

[10,20] [100,110]

[20,40]

[100,130]

[50,70] [110,120]

[130,140] [160,190]

[80,100]

[150,160]

[180,190]

Figure 7: A sample run of LPC on the quantitative constraints speci�ed in Example 1. We start with N and compute

N

0

(1)

; N

00

(1)

. Thereafter, we perform a second iteration in which we compute N

0

(2)

; N

00

(2)

and �nally, in the third iteration,

there is no change. The �rst iteration removes 7 intervals while the second iteration removes a single interval. In addition,

LPC explicates an induced constraint T

02

, and thus is capable of inferring new facts that were not speci�ed initially

about the times event X

2

can occur. Note that applying ULT on the network N will have no e�ect.

[11,12]

[1,2]

[21,22]

[0,1]

[16,17]

[23,24]

[11,12]

[1,2]

[21,22]

[0,1]

[16,17]

[23,24]

Loose Path-Consistency

[0,22] [23,33] [34,50] [1,22] [23,29] [34,46]

Figure 8: Solving the fragmentation problem.

www.manaraa.com

Another variation of LPC is Partial LPC (PLPC) in

which the relaxation operation T

ij

 T

ij

/ (T

ik

 T

kj

)

is performed only if T

ij

and at least one of T

ik

; T

kj

is

speci�ed in the input network (i.e. non-universal).

The relative e�ectiveness of the various algorithms is

measured by the relative tightness of the networks they

compute. The partial order with respect to e�ectiveness

(tightness) is presented in Figure 10. A directed edge

from algorithm A

1

to A

2

indicates that A

2

computes

a tighter network than A

1

. Note that algorithms PC-2

and DPC are exponential.

Exponential
Polynomial

LPC-2

DLPC

DPC

PC-2

PLPC

LPC

ULT

Figure 10: The partial order on the e�ectiveness.

3.1 Answering Queries

Path-consistency algorithms and its variations may

tighten all the constraints, including those that were not

speci�ed (i.e. universal) in the input network. As a re-

sult the query \when can event X

i

occur ?" can be an-

swered by simple table lookup, even when the constraint

T

0i

is not speci�ed in the input network. Similarly, when

asking \how long after event X

i

can event X

j

occur ?",

the answer is given by the constraint T

ij

.

However, the constraints algorithm LPC computes pro-

vide only approximate answers. Supposed we have al-

ready preprocessed with LPC and we are given the query

\can event X

i

occur at time t ?". If t 62 T

0i

then the

answer is 'No'; otherwise, the answer is 'Maybe' because

there is no guarantee that the event can occur at every

point in T

0i

. For example, consider the network in Fig-

ures 4,8. The path-induced constraint is broken into 10

subintervals while LPC computes a looser constraint of 3

intervals. Thus, there are points that are allowed by the

Loose-Path-Consistent constraint in Figure 8 but not al-

lowed by the Path-Consistent network in Figure 4. Note

that enforcing path-consistency is also not complete, i.e.

is not su�cient to guarantee a 'Yes' answer.

3.2 Extending LPC to Combined Networks

We next extend algorithm LPC to process networks of

combined qualitative and quantitative constraints. As

de�ned in Section 2, the combined model involves three

types of constraints: point-point (quantitative), point-

interval and interval-interval (qualitative). To extend

the applicability of LPC to the combined qualitative and

quantitative networks, we modify the semantics of the

/;
 operators.

Let T

ij

; T

ik

; T

kj

be the constraints on variables

X

i

; X

j

; X

k

. For computing T

0

ij

 T

ij

/(T

ik

T

kj

) we dis-

tinguish between �ve exhaustive and mutually exclusive

cases:

Case 1: IfX

i

; X

j

; X

k

are interval variables then Allen's

transitivity table [1] is used to compute T

ik

 T

kj

and the / operator is interpreted as the usual inter-

section operator.

Case 2: If both X

i

; X

j

are interval variables and X

k

is

a point variable then Meiri's transitivity tables [8]

are used to compute T

ik

 T

kj

and the / operator

is interpreted as the usual intersection.

Case 3: If exactly one of X

i

; X

j

is an interval variable

and X

k

is a point variable, then the quantitative

point-point constraint, T

ik

or T

kj

, is translated into

a qualitative point-point constraint (using <;>;=)

and Meiri's transitivity tables [8] are used to com-

pute T

ik

 T

kj

; the / operator is interpreted as the

usual intersection.

Case 4: If X

i

; X

j

are point variables and X

k

is an in-

terval variable then T

ik

 T

kj

is computed using

Meiri's tables [8]. If T

ik

T

kj

6= f<;>g then the re-

sulting constraint is translated into a single interval

and the / operator is interpreted as the � operator

in De�nition 1; otherwise, to avoid increasing the

number of intervals in T

ij

, we set T

0

ij

 T

ij

, i.e. no

change .

Case 5: If all of X

i

; X

j

; X

k

are point variables then the

composition operation used is described by De�ni-

tion 1 and the / operator is described in De�nition

3.

With these new de�nitions of the operators
; /, we can

apply algorithms LPC, LPC-2, DLPC as described in

Figures 6,9.

4 General Backtracking.

Algorithm LPC and its variants are useful for detecting

inconsistencies and explicating implicit constraints, but

they do not �nd a solution (scenario). A brute-force al-

gorithm for solving a temporal network decomposes it

into separate tractable subnetworks by selecting a single

interval from each quantitative constraints and a single

relation from a qualitative constraint [8, 3]. Each sub-

network is then solved separately and the solutions are

combined. Alternatively, a naive backtracking algorithm

will successively label constraints by basic labels, as long

as the resulting labeling is consistent [8, 3]. Once incon-

sistency is detected, the algorithm backtracks. A more

sophisticated algorithm may perform forward checking

to reduce the number of future possible interval assign-

ment during the labeling process.

www.manaraa.com

De�nition 5: [8] A basic label of an arc i ! j is a

selection of (1) a single interval from the interval set T

ij

for quantitative constraints, and (2) a single relation for

qualitative constraints. A singleton labeling of N is a

selection of a basic label for all the constraints in N and

a partial labeling of N is such that some constraints are

assigned basic labels.

Backtracking on temporal constraint networks involves

repeatedly selecting a basic label from constraints

and propagating the implications of this instantiation

throughout the network. For processing qualitative net-

works, Ladkin and Reinefeld [7] proposed the follow-

ing algorithm. First perform path-consistency. If no

inconsistency was detected, select one constraint, la-

bel it by an atomic relation from that constraint and

enforce path-consistency again to propagate the impli-

cations of that labeling (i.e. perform forward check-

ing). Repeat instantiating constraints and enforcing

path-consistency until all constraints are labeled by a

single atom. If, at some point, inconsistency was de-

tected, backtrack. The improvements Ladkin and Reine-

feld introduce in their implementation are (1) to perform

path-consistency using Belman-Ford algorithm, and (2)

not to perform path-consistency on the subnetwork that

is already singly labeled (since it is already consistent).

While Ladkin and Reinefeld's algorithm is applicable

to qualitative interval algebra networks only, our al-

gorithm is applicable to the combined model. Instead

of enforcing complete Path-Consistency on the quan-

titative constraints we propose to enforce Loose Path-

Consistency. In addition, we propose two improvements:

(1) instead of using a stack that requires O(n

4

) space

2

we use some indexing technique that eliminates the need

for a stack and requires to keep only two copies of the

input network; (2) we do not instantiate constraints that

were universal in the input network (but became non-

universal as a result of constraint propagation).

In addition to propagating constraints during backtrack

search, algorithms ULT, LPC and their variations are

useful for preprocessing before initiating search. These

algorithms reduce the number of disjuncts in the con-

straints, i.e. the number of intervals in quantitative con-

straints and the number of allowed relation in qualitative

constraints. As a result, the branching factor is reduced,

less dead-ends are encountered and the search becomes

more e�cient. This is in contrast to algorithms PC-2

and DPC, which are not useful for preprocessing before

search since they increase the fragmentation, thus in-

crease the branching factor and render backtrack search

less e�cient [16].

5 Empirical Evaluation

In this section we evaluate the algorithms presented in

previous sections using arti�cially generated problem

distributions as a benchmark. Although we are capa-

2

since there are O(n

2

) entries of size O(n

2

) each - this

was the major problem in [7]

ble of solving large problems, too much time is required

for performing systematic analysis and obtaining statis-

tically signi�cant results. Therefore, we report results

obtained on small problems.

In our benchmarks, the number of constraints, e, was

�xed and the constraints were chosen such that every

possible subset of e constraints out of the total (

n

2

) is

equally likely to occur. In addition, the generator guar-

antees that the constraint graph is connected. The pa-

rameters with which problem instances were generated

are:

� the number of variables n,

� the number of constraints e,

� for quantitative point-point constraint:

{ the number of intervals per constraint k,

{ the range of the constraints R, and

{ the tightness of the constraints �,

� the number of atoms in every point-interval con-

straint �,

� the number of atoms in every interval-interval con-

straint .

5.1 Comparing Path-Consistency Algorithms

In Theorem 2 and Figure 10 we have described the quali-

tative relationships between the various algorithms. We

next present a quantitative empirical comparison. In

[16] algorithmsPC-2 and LPC were compared with ULT.

It was observed that both PC-2 and DPC are exponen-

tial in the number of intervals per constraint in the input

network; the complexity of algorithm ULT was almost

constant. Despite the fact that ULT was orders of mag-

nitude more e�cient, it was able to detect inconsistency

in most of the cases PC-2 did. As we will show next,

algorithm LPC and its variations are signi�cantly more

e�ective than ULT. Since we have already shown that

LPC is worst case polynomial, there is no need to re-

port comparison with PC-2 and DPC.

We compare the e�ectiveness and e�ciency of algo-

rithms LPC-2 and DLPC. By e�ectiveness we mean

the ability to detect inconsistencies and by e�ciency

we mean the execution time. We measure e�ectiveness

with respect to algorithmLPC-2 rather than to PC-2 be-

cause the former is polynomial (and almost as e�cient

as ULT) while the latter is exponential. The columns

labeled \Acc of PLPC" and \Acc of DLPC" specify the

fraction of cases PLPC, DLPC detected inconsistency

given that LPC-2 did. The columns labeled \# Op

< alg >" describe the number of revision operations

T

ij

 T

ij

/ (T

ik

 T

kj

) made by algorithm < alg >. We

use this measure since, being machine independent, it is

more informative than execution time.

As observed in Table 3, while LPC-2 is the most e�ec-

tive, DLPC is more e�cient. The intermediate algo-

rithm, Partial LPC-2, seems to be the most bene�cial

www.manaraa.com

of Acc of Acc of Acc of # Op: # Op: # Op: T ime Time Time Time

Consts PLPC DLPC ULT�2 LPC�2 PLPC DLPC LPC�2 PLPC DLPC ULT�2

32 vars; 100% interval variables (pure qualitative); 200 reps:

250 100% 100% 100% 17K 13K 11K 0:621 0:467 0:417 0:621

300 100% 98% 100% 20K 17K 15K 0:748 0:632 0:551 0:748

350 100% 92% 100% 25K 22K 19K 0:886 0:807 0:689 0:886

400 100% 79% 100% 28K 27K 23K 1:001 0:970 0:807 1:001

450 100% 71% 100% 30K 30K 26K 1:056 1:056 0:907 1:056

500 100% 73% 100% 28K 28K 25K 0:971 0:971 0:885 0:971

32 vars; 50% interval variables (mixed); 200 reps:

150 100% 100% 100% 13K 6K 5K 0:210 0:121 0:082 0:163

200 99% 98% 97% 18K 11K 8K 0:283 0:200 0:135 0:174

250 98% 93% 95% 23K 17K 11K 0:374 0:306 0:199 0:308

300 96% 63% 65% 26K 22K 15K 0:456 0:406 0:266 0:422

350 98% 32% 89% 27K 25K 20K 0:460 0:440 0:325 0:426

400 100% 46% 98% 24K 23K 20K 0:406 0:402 0:347 0:385

450 100% 86% 100% 20K 20K 19K 0:400 0:400 0:343 0:379

500 100% 100% 100% 16K 16K 16K 0:359 0:353 0:294 0:331

32 vars; 100% point variables (pure quantitative); 200 reps:

150 98% 92% 90% 25K 12K 5K 0:546 0:400 0:165 0:132

200 99% 25% 15% 27K 17K 8K 0:623 0:533 0:259 0:162

250 100% 70% 45% 14K 11K 10K 0:380 0:350 0:315 0:181

300 100% 99% 77% 9K 8K 8K 0:287 0:275 0:270 0:164

350 100% 100% 94% 7K 7K 7K 0:244 0:241 0:235 0:126

400 100% 100% 100% 6K 6K 6K 0:211 0:212 0:204 0:105

Table 3: E�ectiveness and e�ciency of LPC-2, DLPC, Partial LPC and ULT-2. The e�ectiveness is measured

with respect to LPC-2. The problems generated have 32 variables, tightness of interval-interval constraints is 7

relations out of 13 allowed, namely = 7=13, for point-interval 4 out of 5 are allowed, namely � = 4=5, and for

point-point constraints � = 45%. The results are averaged over 200 repetitions.

since for the cost of a small degradation of e�ective-

ness we gain a signi�cant speedup. Algorithm ULT-2 is

an extension of algorithm ULT reported in [16] capable

of processing networks with combined qualitative and

quantitative constraints. We observe that ULT-2 is less

e�ective than LPC yet more e�cient. In the vast major-

ity of the cases the quality of the approximationobtained

by PLPC, DLPC and ULT-2 to LPC-2 was more than

60%. Since the space of all possible parameterizations is

very large, we have focused on what we believe is repre-

sentative of cases which favor LPC-2, thus showing the

improvements at their worst.

5.2 Backtracking

In the rest of this section we report empirical results ob-

tained for backtracking. As we demonstrate in Figure

12, the di�culty of problems must be carefully measured

in the region where there is transition from solvable to

unsolvable instances. In Figure 12a we repeat the exper-

iment conducted in [7], on qualitative networks, yet here

we report results on quantitative networks, and observe

that the peak in di�culty lies in the region where about

50% of the problems are satis�able. In Figure 12b we

observe the same pattern when changing the tightness of

the constraints. Consequently, in the following we will

emphasize using these di�cult problems as benchmarks

for comparing the various algorithms.

In �gure 13 we compare the e�ectiveness of algorithms

ULT and LPC for pruning dead-ends when used for both

preprocessing before the search and constraint propaga-

tion within the search. The original backtrack algorithm

as presented in [3] is compared with algorithm ULT re-

ported in [16] and algorithm LPC presented in this pa-

per.

As we implemented the original algorithm, labeled \Old-

Backtrack", we immediately observed that even for

tiny problems with 5-6 variables the algorithm would

not terminate. Surprisingly, after preprocessing with

the path-consistency algorithm PC-2, problems became

even harder to solve, due to the increased fragmentation.

In contrast, preprocessing with ULT results in problems

that on which naive backtrack search is manageable.

We therefore used the \Old-Backtrack" [3] preprocessed

with ULT as our reference point.

To prune dead-ends we apply either ULT or LPC after

each constraint instantiation. This results in reducing

the number of incorrect intervals that remain to be in-

stantiated and thus signi�cantly reduces the number of

dead-ends. We compare two backtracking algorithms,

one in which ULT is used, called ULT-Backtrack, and

one in which LPC is used, called LPC-Backtrack; ULT-

Backtrack is preprocessed with ULT and LPC-Backtrack

is preprocessed by LPC.

The results are reported in Figure 13. We observe

tremendous improvements in pruning dead-ends. Since

LPC is signi�cantly more e�ective than ULT (Table 3),

the number of dead-ends encountered by ULT-Backtrack

is orders of magnitude larger than the number of dead-

www.manaraa.com

2015105
.1

1

10

100

1000
Tightness 36%

Tightness 40%

Tightness 44%

The difficulty of various sizes as measured
 using the ULT-Backtrack algorithm.

Number of Variables

N
um

be
r

of
 D

ea
d-

E
nd

s

2015105
0.0

0.2

0.4

0.6

0.8

1.0

Tightness 36%

Tightness 40%

Tightness 44%

The faction of consistent instances for
 complete graphs of different sizes.

Number of Variables
F

ra
ct

io
n

of
 C

on
si

st
en

t

 I

ns
ta

nc
es

(a) The di�culty as tightness is constant.

100806040200
.01

.1

1

10

100

1000

10000

100000
10 variables
12 variables
14 variables
16 variables

Difficulty vs Tightness for 10,12,14,16 vars,
 complete graphs, 3 intervals, 500 reps,
for IULT-Backtrack + LPC preprocessing.

Tightness

N
um

be
r

of
 D

ea
d

E
nd

s

100806040200
0.0

0.2

0.4

0.5

0.7

0.9

1.1

10 variables

12 variables

 Phase transition for 10,12 variables,
45,66 constraints, 3 intervals, 500 reps.

Tightness

F
ra

ct
io

n
of

 C
on

si
st

en
t

 P
ro

bl
em

s

(b) The di�culty as a function of tightness.

Figure 12

www.manaraa.com

10080604020
10 -2

10 -1

10 0

10 1

10 2

10 3

10 4

10 5

10 6

10 7

Old-Backtrack + ULT prep.
ULT-Backtrack + ULT prep.

LPC-Backtrack + LPC prep.

Comparing Backtracking Algorithms for
 Quantitative Point-Point Networks,
12 vars, 66 consts, 3 intervals, 500 reps.

Tightness

N
um

be
r

of
 D

ea
d-

E
nd

s

 (

lo
g

sc
al

e)

The time for ULT-Backtrack + ULT prep
at the peak was about 100 seconds.

The time for LPC-Backtrack + LPC prep
at the peak was about 1.5 seconds.

The overall improvement is measured on
difficult problems in the phase transision.

Figure 13: A comparison of various backtracking algorithms.

1311975
.1

1

10

100

1000

Difficulty peak as tightness changes, for
Interval-Interval Networks, complete graphs,
12 vars, 66 consts, 100 reps.

Num of Allowed Relations

N
um

be
r

of
 D

ea
d-

E
nd

s

1311975
0.00

0.20

0.40

0.60

0.80

1.00

Drop in Accuracy of Path-Consistency for
 Interval-Interval Networks,
 12 vars, 66 consts, 100 reps.

Num of Allowed Relations

F
ra

ct
io

n
of

 C
or

re
ct

 C
on

si
st

en
cy

 d
et

ec
ti

on

(a) (b)

Figure 14: The di�culty as a function of tightness.

www.manaraa.com

ends encountered by LPC-Backtrack. Note that the ex-

periments performed by Ladkin and Reinefeld [7] report

that path-consistency is very e�ective for pruning back-

track search in qualitative temporal networks and here

we report that the same pattern is repeated for quanti-

tative networks.

Finally, we report results obtained with backtracking on

qualitative networks in Figure 14. In the experiments

performed by Ladkin and Reinefeld [7], the tightness

was 50%, and most of the problems generated were in-

consistent. In our experiments we observe that when 9

out of 13 interval relations were allowed, all the prob-

lems generated were consistent. As we report in Figure

14, when 6 out of 13 interval relations are allowed, the

problems were about 200 times easier than those at the

peak (Figure 14a). Since these results are obtained on

small problems with 12 variables, by extrapolating, for

large problems the di�erence in di�culty is huge. In

addition, for 50% tightness, path-consistency is still ef-

fective since it correctly detects inconsistency in more

than 60% of the cases (Figure 14b). We can therefore

conclude that empirical evaluation must be performed

using carefully selected problem distributions as bench-

marks.

6 Conclusion

In this paper we report several new algorithms for

processing Temporal Constraint Satisfaction Problems

(TCSP). We identify the fragmentation problem which

explains why, in contrast to discrete Constraint Sat-

isfaction Problems (CSP), enforcing path-consistency

on quantitative TCSPs is exponential. Identifying this

problem allows us to provide with e�cient yet e�ective

polynomial algorithms that e�ectively detect inconsis-

tency, explicate implicit constraints and prune dead-

ends in backtrack search.

When enforcing path-consistency on quantitative TC-

SPs, as intervals are broken into several smaller subin-

tervals, the number of intervals per constraint increases,

resulting in exponential blowup. To avoid fragmenta-

tion, we de�ne loose intersection. Using the loose inter-

section operator, we derive a new series of algorithms,

called LPC, LPC-2, DLPC and PLPC that are e�cient

yet e�ective. These algorithm are compared both theo-

retically (qualitatively) and empirically (quantitatively).

The quantitative empirical evaluation is performed on

carefully selected benchmarks. We observe that the dif-

�cult problems lie in the region in which about half of

the instances generated are solvable (and half is not);

this region is often referred to as the transition region.

Using these problem distributions as benchmarks, we

report that the methods presented in this paper are ca-

pable of improving the e�ciency of backtrack search on

small problems by orders of magnitude. Thus, by ex-

trapolating, the speedup obtained for large problems is

tremendous.

References

[1] Allen, J.F. 1983. Maintaining knowledge about tem-

poral intervals. CACM 26(11):832-843.

[2] Cheesman, P, Kanefsky, B., Taylor, W., 1991. Where

the Really Hard Problems Are. In Proc. of IJCAI-91,

163-169.

[3] Dechter, R., Meiri, I., Pearl, J. 1991. Temporal

Constraint Networks. Arti�cial Intelligence 49:61-95.

[4] Dean, T.M., McDermott, D. V. 1987. Temporal data

base management. Arti�cial Intelligence 32:1-55.

[5] Freuder, E.C. 1985. A su�cient condition of backtrack

free search. JACM 32(4):510-521.

[6] Hanks, S., McDermott, D.V., 1986. Default reasoning,

nonmonotonic logics, and the frame problem. In Proc.

of AAAI-86, 328-333.

[7] Ladkin, P. B., Reinefeld, A. 1992. E�ective solution

of qualitative interval constraint problems. Arti�cial

Intelligence 57:105-124.

[8] Meiri, I., 1991. Combining Qualitative and Quantita-

tive constraints in temporal reasoning, Ph.D. Thesis,

UCLA 1991.

[9] Mitchell, D., Selman, B., Levesque, H., 1992. Hard

and Easy Distributions of SAT Problems, In Proc. of

AAAI-92.

[10] Kautz, H., Ladkin, P. 1991. integrating metric and

qualitative temporal reasoning, In Proc. of AAAI-91,

241-246.

[11] Malik, J., Binford, T.O., 1983. Reasoning in time and

space, In Proc. of IJCAI-83, 343-345.

[12] Koubarakis, M. 1992. Dense time and temporal con-

straints with 6=. In Proc. KR-92, 24-35.

[13] McDermott, D.V., 1982. A temporal logic for rea-

soning about processes and plans, Cognitive Science

6:101-155.

[14] Poesio, M., Brachman, R. J. 1991. Metric Constraints

for Maintaining Appointments: Dates and Repeated

Activities. In Proc. AAAI-91, 253-259.

[15] Sateh, N., 1991. Look-Ahead techniques for Micro-

opportunistic Job Shop Scheduling, Ph.D. thesis,

School of Computer Science, Carnegie Mellon Univer-

sity, March 1991.

[16] Schwalb, E., Dechter, R., 1993. Coping with Disjunc-

tions in Temporal Constraint Satisfaction Problems,

In Proc. AAAI-93, 127-132.

[17] Shoham, Y., 1988. Reasoning about Change: Time and

causation from stand point of Arti�cial Intelligence,

MIT press, Cambridge, MA 1988.

[18] Valdez-Perez. R.E., 1986. Spatio-Temporal Reason-

ing with inequalities, Arti�cial Intelligence Laboratory,

AIM-875, MIT, Cambridge.

[19] Van Beek, P. 1992. Reasoning about qualitative tem-

poral information. Arti�cial Intelligence 58:297-326.

[20] Vilain, M., Kautz, H. 1986. Constraint propagation

algorithms for temporal information. In Proc AAAI-

86, 377-382.

